754 research outputs found

    Unitary One Matrix Models: String Equations and Flows

    Get PDF
    We review the Symmetric Unitary One Matrix Models. In particular we discuss the string equation in the operator formalism, the mKdV flows and the Virasoro Constraints. We focus on the \t-function formalism for the flows and we describe its connection to the (big cell of the) Sato Grassmannian \Gr via the Plucker embedding of \Gr into a fermionic Fock space. Then the space of solutions to the string equation is an explicitly computable subspace of \Gr\times\Gr which is invariant under the flows.Comment: 20 pages (Invited talk delivered by M. J. Bowick at the Vth Regional Conference on Mathematical Physics, Edirne Turkey: December 15-22, 1991.

    Abelian gauge fields coupled to simplicial quantum gravity

    Get PDF
    We study the coupling of Abelian gauge theories to four-dimensional simplicial quantum gravity. The gauge fields live on dual links. This is the correct formulation if we want to compare the effect of gauge fields on geometry with similar effects studied so far for scalar fields. It shows that gauge fields couple equally weakly to geometry as scalar fields, and it offers an understanding of the relation between measure factors and Abelian gauge fields observed so-far.Comment: 20 page

    Singularities of the Partition Function for the Ising Model Coupled to 2d Quantum Gravity

    Get PDF
    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2d quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.Comment: 22 pages, LaTeX2e, 10 figures, added discussion on antiferromagnetic transition and reference

    The Area Law in Matrix Models for Large N QCD Strings

    Full text link
    We study the question whether matrix models obtained in the zero volume limit of 4d Yang-Mills theories can describe large N QCD strings. The matrix model we use is a variant of the Eguchi-Kawai model in terms of Hermitian matrices, but without any twists or quenching. This model was originally proposed as a toy model of the IIB matrix model. In contrast to common expectations, we do observe the area law for Wilson loops in a significant range of scale of the loop area. Numerical simulations show that this range is stable as N increases up to 768, which strongly suggests that it persists in the large N limit. Hence the equivalence to QCD strings may hold for length scales inside a finite regime.Comment: 12 pages, 4 figure

    The Concept of Time in 2D Quantum Gravity

    Full text link
    We show that the ``time'' t_s defined via spin clusters in the Ising model coupled to 2d gravity leads to a fractal dimension d_h(s) = 6 of space-time at the critical point, as advocated by Ishibashi and Kawai. In the unmagnetized phase, however, this definition of Hausdorff dimension breaks down. Numerical measurements are consistent with these results. The same definition leads to d_h(s)=16 at the critical point when applied to flat space. The fractal dimension d_h(s) is in disagreement with both analytical prediction and numerical determination of the fractal dimension d_h(g), which is based on the use of the geodesic distance t_g as ``proper time''. There seems to be no simple relation of the kind t_s = t_g^{d_h(g)/d_h(s)}, as expected by dimensional reasons.Comment: 14 pages, LaTeX, 2 ps-figure

    Monte Carlo Studies of the Dimensionally Reduced 4d SU(N) Super Yang-Mills Theory

    Get PDF
    We simulate a supersymmetric matrix model obtained from dimensional reduction of 4d SU(N) super Yang-Mills theory. The model is well defined for finite N and it is found that the large N limit obtained by keeping g^2 N fixed gives rise to well defined operators which represent string amplitudes. The space-time structure which arises dynamically from the eigenvalues of the bosonic matrices is discussed, as well as the effect of supersymmetry on the dynamical properties of the model. Eguchi-Kawai equivalence of this model to ordinary gauge theory does hold within a finite range of scale. We report on new simulations of the bosonic model for N up to 768 that confirm this property, which comes as a surprise since no quenching or twist is introduced.Comment: 6 pages, 7 figures, Talk presented by K.N.A. at the HEP 2000 Annual Workshop of the Hellenic Society for the Study of High Energy Physics at the University of Ioannina. References added, minor correction

    Large N Dynamics of Dimensionally Reduced 4D SU(N) Super Yang-Mills Theory

    Get PDF
    We perform Monte Carlo simulations of a supersymmetric matrix model, which is obtained by dimensional reduction of 4D SU(N) super Yang-Mills theory. The model can be considered as a four-dimensional counterpart of the IIB matrix model. We extract the space-time structure represented by the eigenvalues of bosonic matrices. In particular we compare the large N behavior of the space-time extent with the result obtained from a low energy effective theory. We measure various Wilson loop correlators which represent string amplitudes and we observe a nontrivial universal scaling in N. We also observe that the Eguchi-Kawai equivalence to ordinary gauge theory does hold at least within a finite range of scale. Comparison with the results for the bosonic case clarifies the role of supersymmetry in the large N dynamics. It does affect the multi-point correlators qualitatively, but the Eguchi-Kawai equivalence is observed even in the bosonic case.Comment: 35 pages, 17 figure

    Large Gauged Q Balls

    Get PDF
    We study Q-balls associated with local U(1) symmetries. Such Q-balls are expected to become unstable for large values of their charge because of the repulsion mediated by the gauge force. We consider the possibility that the repulsion is eliminated through the presence in the interior of the Q-ball of fermions with charge opposite to that of the scalar condensate. Another possibility is that two scalar condensates of opposite charge form in the interior. We demonstrate that both these scenaria can lead to the existence of classically stable, large, gauged Q-balls. We present numerical solutions, as well as an analytical treatment of the ``thin-wall'' limit
    corecore